2025-05-11 14:40:24 来源:人人学历网
2025年高职单招《数学》每日一练试题05月11日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、“抛掷一颗正方形骰子出现点数为8”是随机事件()
答 案:错
解 析:随机是指有可能出现这个事件,但是一个骰子只有六个面,不可能出现点数八,所以是不可能事件
2、二项式(x+1)5的展开式共6项。()
答 案:对
解 析:n次方的展开式有n+1项,5次方的展开式有6项
单选题
1、学校食堂备有5种素菜、3种荤菜、2种汤,现要配成一荤一素一汤的套餐,则可以配制出()种不同的套餐.
答 案:B
解 析:分步进行,第一步配一个素菜,有5种选择;第二步配一个荤菜,有3种选择;第三步配一个汤,有2种选择,所以可以配制出5×3×2=30种不同的套餐.
2、某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为()
答 案:A
多选题
1、下列关于圆的叙述正确的有()
答 案:ACD
解 析:A、由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B、圆的切线垂直于过切点的半径,B选项错误;C、正多边形中心角的度数等于这个正多边形一个外角的度数,都等于360°/n,C选项正确;D、过圆外一点引的圆的两条切线,则切线长相等,D选项正确。故选:ACD
2、列命题中正确的个数是( )
答 案:BCD
解 析:对于A取a=1,b=2,c=3,a2=1,b2=4,c2=9,A错; 对于B,a=b=c,2a=2b=2c,B正确;对于C,∵a,b,c成等差数列,∴a+c=2b.∴(ka+2)+(kc+2)=k(a+c)+4=2(kb+2),C正确;对于D,a=b=c≠0?1/a=1/b=1/c,D正确。综上可知选BCD。
主观题
1、如图所示,在平面四边形ABCD中,AB=√5,AC=3,BC=2√2.
(1)求∠ACB的大小;
(2)若cos∠ADC=
,cos∠BCD=
,求线段AD的长.
答 案:(1)在△ABC中,由余弦定理得 因为0<∠ACB<π,所以
(2)由(1)可知
因为
,所以
Sin∠ACD=sin(∠BCD-∠ACB)=sin∠BCDcos∠ACB-cos∠BCDsin∠ACB
又因为
所以
在△ACD中,由正弦定理得
所以
2、已知抛物线C:x2=4y和直线7:2x+2y+m=0. (1)若抛物线C和直线l有两个交点,求m的取值范围; (2)若m>1,且直线l与抛物线C有两个交点A,B,线段AB的垂直平分线交y轴于点P,求△PAB的面积S的取值范围。
答 案:(1)由2x+2y+m=0得 将其代入x2=4y中得x2+4x+2m=0,
所以△=42-4×1×2m=16-8m.
因为抛物线C和直线l有两个交点,所以△=16-8m>0,解得m<2.
因此,m的取值范围是(-∞,2)
(2)设点A(x1,,y1),B(x2,y2),则由方程x2+4x+2m=0可得x1+x2=-4,x1x2=2m,
(x1-x2)2=(x1+x2)2-4x1x2=8(2-m);
所以
因为
所以线段AB的中点
kAB=-1,
所以过点Q与线段AB垂直的直线方程为
即2x-2y+8-m=0.
该直线与y轴的交点
到直线l的距离
所以△PAB的面积
因为1<m<2,所以0<4-2m<2,
因此,△PAB的面积S的取值范围是(0,4√2)
填空题
1、直线2x-y-4=0绕它与x轴的交点逆时针旋转45°,所得的直线方程是________.
答 案:3x+y-6=0
解 析:提示:先求出所求直线的斜率,再用点斜式写出直线方程
2、双曲线的焦点在______轴上,a=______,b=______,c=______,实轴长______,虚轴长______,焦距为______,离心率e=______,两个顶点坐标为______,______,两个焦点坐标为______,______,渐进线方程为______。
答 案: