2024年成考高起点《数学(理)》每日一练试题10月10日

2024-10-10 12:03:31 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题10月10日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设函数f(x-2)=x2-3x-2,则f(x)=()。

  • A:x2+x-4
  • B:x2-x-4
  • C:x2+x+4
  • D:x2-x%-4

答 案:A

解 析:令x-2=t,得x=t+2代入原式,得f(t)=(t+2)2-3(t+2)-2=t2+t-4.即f(x)=x2+x-4.(答案为 A)

2、=()。

  • A:8
  • B:-8
  • C:2
  • D:-2

答 案:B

解 析:由于。log22=-8。故选B。

3、在定义域内下列函数中为增函数的是()。

  • A:f(x)=2-x
  • B:f(x)=-log2x
  • C:f(x)=x3 
  • D:f(x)=x2+1

答 案:C

解 析:由函数的性质可知,f(x)=x3为增函数。(答案为C)  

4、设二次函数f(x)=x2+px+q的图象经过点(1,一4)且则该二次函数的最小值为()。

  • A:-6
  • B:-4
  • C:0
  • D:10

答 案:B

解 析:

主观题

1、 展开式的二项式系数之和比展开式的二项式系数之和小240。 求:(1)展开式的第3项;
(2)展开式的中间项。

答 案:

2、设a为实数,且tanα和tanβ是方程ax2+(2a-3)x+(a-2)=0的两个实根,求tan(α+β)的最小值。

答 案:由已知得

3、求函数上的最大值以及取得这个最大值的x。

答 案:.1 函数取最大值,即y最大值=。

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

填空题

1、已知≤0<2π,且实数x满足log3x=2-cos2θ+sin2θ,则x的最小值是______。  

答 案:3

解 析:因为log3x=2-(cos2θ-sin2θ)=2-cos2θ。 又log3x中的底数3>1,因此要使x最小,应使2-cos2θ的值最小,而其最小值为1,故x=3。

2、在自然数1、2、…、100中任取一个数,该数能被3整除的概率是______。  

答 案:0.33

解 析:此题随机试验包含的基本事件总数n=100,且每个数能被取到的机会均等,即属于等可能事件的概率能被3整除的自然数的个数m=33,故所求概率  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里