2024年成考高起点《数学(理)》每日一练试题11月27日

2024-11-27 12:08:52 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题11月27日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、某车间有甲、乙两台机床,已知甲机床停机与不停机的概率为0.06,乙机床停机的概率为0.07,甲、乙两车床同时停机的概率是()。

  • A:0.13
  • B:0.0042
  • C:0.03
  • D:0.04

答 案:B

解 析:本题的事件可以认为甲机床停机与不停机并不影响乙机床停机的概率,所以此题由实际问题判断属于相互独立同时发生事件,可用乘法公式求其概率为0.06×0.07=0.0042。  

2、=()。

  • A:8
  • B:-8
  • C:2
  • D:-2

答 案:B

解 析:由于。log22=-8。故选B。

3、在直角坐标系Oxy内,已知=6,且与x轴和y轴的正方向的夹角分别为120°和30°,则在x轴和y轴上的正投影的数量分别为()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由已知得向量在x轴上的投影为 ,故应选D。

4、已知{i,j,k}是单位正交基底,a=i+j,b=-i+j-k,则a·b=()。

  • A:-1
  • B:1
  • C:0
  • D:2

答 案:C

解 析:a·b=(1,1,0)·(-1,1,-1)=1×(-1)+1×1+0×(-1)=0。答案为C。  

主观题

1、空间有四个点,如果其中任何三点不在同一直线上,可以确定几个平面?  

答 案:根据公理,在所给定的四点中任取三点,可确定一个平面,由组合公式所以共可确定四个平面。

解 析:空间有n个点,如果其中任何三点不在同一直线上,可以确定个平面。  

2、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

3、设函数(1)求;(2)求函数f(θ)最小值。

答 案:

4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

填空题

1、已知角α的终边过点P(-8m,-6cos60°)且cosα=-,则m______。

答 案:

解 析:∵P(-8m,-3)且cosα=∴P点在第三象限 ∴m>0∵y=-3,r=5∴x=-8m=-4

2、若A(3,a),B(-4,3)两点间的距离为,则a=______。

答 案:a=-4或10

解 析:由两点间的距离公式得,,两边平方整理得(a-3)2=72→a-3=±7→a=-4或10。

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里