2024年成考高起点《数学(文史)》每日一练试题12月26日

2024-12-26 12:19:15 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题12月26日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则这2个球都为红球的概率为()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:两个球都是红球的概率为

2、下列各式的值为零的是()。

  • A:00
  • B:log11
  • C:
  • D:log2|-1|

答 案:D

解 析:00和log11均没有意义,可排除(A)、(B),而(2-)0=1。故选D。

3、已知sinα=,且540°<α<630°,则sin2α=()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:由已知,360°+180°<α<360°+270°,所以α是第三象限的角,故

4、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是()

  • A:(x-3)2+(y-2)2=0
  • B:(x+3)2+(y+2)2=0
  • C:(x-6)2+(y-4)2=0
  • D:(x+6)2+(y+4)2=0

答 案:C

解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆X2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4。  

主观题

1、设函数 (1)求;(2)求函数f(θ)最小值。

答 案:

2、计算  

答 案:

3、教室里有50人在开会,其中学生35人,家长12人,老师3人,现校长在门外听到有人在发言,那么发言人是老师或学生的概率为多少?  

答 案:此题属于互斥事件,发言人是老师的概率为,是学生的概率为,故所求概率为。

4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

填空题

1、=______。

答 案:27

解 析:

2、函数y=2x(x+1)在x=2处的切线方程是__________.  

答 案:10x-y-8=0

解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里