2024-12-30 12:16:51 来源:人人学历网
2024年成考高起点《数学(文史)》每日一练试题12月30日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、从13名学生中选出2人担任正副班长,不同的选举结果共有()。
答 案:C
2、若log155=m,则log153=()。
答 案:C
解 析:log153=log15=log1515-log155=1-m选C。
3、点(2,4)关于直线y=x的对称点的坐标为()
答 案:A
解 析:点(2,4) 关于直线y=x对称的点为(4,2)
4、点P(-5,12)到y轴的距离()
答 案:D
解 析:由点P的坐标(-5,12)知,点P到y轴的距离为|x|=5
主观题
1、已知三角形的一个内角是,面积是
周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
2、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.
答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。
3、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)
答 案:如图
4、求下列函数的最大值、最小值和最小正周期: (1)
2)y=6cosx+8sinx
答 案: 所以函数的最大值是
最小值是
最小正周期为2π,
(2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为
因此,函数的最大值是10,最小值是-10,最小正周期为2π
填空题
1、在∆ABC中,已知cosA=,cosB=
,那么cosC=______。
答 案:
2、函数f(x)=在区间[-3,3]上的最大值为()
答 案:4
解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格
由上表可知函数在[-3,3]上,在x=1点处有最大值为4.