2025-01-03 12:21:54 来源:人人学历网
2025年成考高起点《数学(理)》每日一练试题01月03日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、若x<y<0,则()。
答 案:D.
解 析:本题主要考查的知识点为不等式的性质.
因为x<y<0,故
2、设复数z1=1+2i,z2=2-i(其中i是虚数单位)()。
答 案:C
解 析:z1•z2=(1+2i)(2-i)=4+3i,
3、()。
答 案:C
解 析:由于
4、过抛物线x2=-8y的焦点且倾斜角为的直线方程是()。
答 案:A
解 析:抛物线x2=-8y的焦点为F(0,-2),直线斜率为 所求直线方程是 y+2=-(x-0),即x+y+2=0.(答案为A)
主观题
1、设函数(1)求
;(2)求函数f(θ)最小值。
答 案:
2、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。 (I)求C的方程; (Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB
答 案:(I)由题意,该抛物线的焦点到准线的距离为
所以抛物线C的方程为
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2,
可得
因此A点坐标为
设B点坐标为
则
因为
则有
即
解得x0=4
所以B点的坐标为
3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
4、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。
答 案:(1)(2)由已知,得
解关于tanα的一元二次方程,得tanα=
填空题
1、若P(3,2)是连接P1(2,y)和P2(x,6)线段的中点,则x=______,y=______。
答 案:x=4,y=-2
解 析:
2、与已知直线 7x+24y-5 =0 平行,且距离等于3的直线方程是______。
答 案:7x+24y+70=0或7z+24y-80-0
解 析: