2025-01-04 12:11:05 来源:人人学历网
2025年成考高起点《数学(文史)》每日一练试题01月04日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、直线l1与直线l2:3x+2y-12=0的交点在x轴上,并且l1⊥l2,则l1在y轴上的截距是()。
答 案:B
解 析:由于直线l2:3x+2y-12=0与x轴的交点为(4,0),斜率为故直线l1的斜率为
,且经过(4,0),故l1的方程为y-0=
令x=0求得
,即l1在y轴上的截距是
故选C。
用点斜式求得直线l1的方程,再根据直线在y轴上的截距的定义求得l1在y轴上的截距,本题主要考查用点斜式求直线的方程,直线在y轴上的截距的定义和求法,属于基础题
2、
答 案:B
解 析: 求必须有6-5x-x2>0,即x2+5x-6<0,即(x+6)(x-1)<0,解得-6
3、函数y=-x2+2x的值域是()。
答 案:C
解 析:本题主要考查的知识点为函数的值域. y=-x2+2x=1-(x-1)2≤1,故原函数的值域为(-∞,1]
4、下列函数中,为减函数的是()
答 案:C
解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数,故选C选项.
主观题
1、(1)已知tanα=
求cot2α的值; (2)已知tan2α=1,求tanα的值。
答 案:(1) (2)由已知,得
解关于tanα的一元二次方程,得tanα=
2、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
3、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。
答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x.
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2,
可得 m=
因此A点坐标为
设B点坐标为
4、已知三角形的一个内角是,面积是
周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
填空题
1、与已知直线7x+24y-5=0平行,且距离等于3的直线方程是______。
答 案:7x+24y+70=0或7x+24y-80=0
解 析:设要求的直线方程为7x+24y+c=0, ∵直线7x+24y+c=0到直线7x+24y-5=0的距离等于3
∴
∴.C=70或-80.
故所求的直线方程为7x+24y+70=0或7x+24y-80=0
2、直线的倾斜角的度数为()
答 案:60°
解 析:由题意知直线的斜率为设直线的倾斜角为α,则tanα=
由0°≤α≤180°,故α=60°