2025年成考高起点《数学(文史)》每日一练试题01月09日

2025-01-09 12:12:18 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题01月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知tanα=m(m≠0),则sinα的值是()。

  • A:
  • B:
  • C:
  • D:

答 案:C

2、函数y=cos4x-sin4x(x∈R)的最小正周期为()。

  • A:
  • B:π
  • C:2π
  • D:4π

答 案:B

解 析:y=(cos2x+sin2x)(cos2x-sin2x)=cos2x, 所以

3、设α=,则()。  

  • A:sinα>0,cosα<0
  • B:sinα>0,cosα>0
  • C:sinα<0,cosα>0
  • D:sinα<0,cosα<0

答 案:A

4、cos12°cos98°-sin12°sin98°=()。

  • A:cos20°
  • B:sin20°
  • C:-cos20°
  • D:-sin20°

答 案:D

解 析:原式=cos110°=cos(180°-70°)=-cos70°=-cos(90°-20°)=-sin20°。  

主观题

1、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

2、已知x+x-1=,求x2+x-2的值。  

答 案:由已知,得

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

4、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

填空题

1、直线的倾斜角的度数为()  

答 案:60°

解 析:由题意知直线的斜率为设直线的倾斜角为α,则tanα=由0°≤α≤180°,故α=60°

2、设直线y=2x+m与抛物线y2=4x没有公共点,则m的取值范围是______。  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里