2025年成考高起点《数学(文史)》每日一练试题01月14日

2025-01-14 12:17:09 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题01月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是( )  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆x2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4. 【考点指要】本题主要考查中心对称图形的定义、中点坐标公式的灵活运用、圆的标准方程的求法,这些主要概念在考试大纲中要求掌握,同时也是近几年经常考到的知识点.

2、已知b1、b2、b3、b4成等差数列,且b1、b4为方程2x2-3x+1=0的两个根,则b2+b3的值为()。  

  • A:1/2
  • B:-3/2
  • C:-1/2
  • D:3/2

答 案:D

3、已知,则sin2α=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:两边平方得,故

4、已知sinα+cosα=,sinα-cosα=,则tanα等于()。

  • A:
  • B:
  • C:1
  • D:-1

答 案:A

主观题

1、  

答 案:

2、已知am=,an=,求a3n-4m的值。  

答 案:

3、cos20°cos40°cos80°的值。  

答 案:

4、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。  

答 案:

填空题

1、在等比数列中,a1=3,an=96,Sn=189,则公比q=______,项数n=_______。  

答 案:q=2,n=6

解 析:解法一:An=A1×q^(n-1)=3q^(n-1)=96q^(n-1)=32S(n-1)=Sn-An=189-96=93
S(n-1)=A1×(1-q^(n-1))/(1-q)
=3(1-32)/(1-q)=93
q=2
2^(n-1)=32
n=6 解法二:  

2、函数f(x)=在区间[-3,3]上的最大值为()  

答 案:4

解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格 由上表可知函数在[-3,3]上,在x=1点处有最大值为4.  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里