2025年成考高起点《数学(文史)》每日一练试题01月22日

2025-01-22 12:31:33 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题01月22日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若向量a=(x,2),b=(-2,4),且a⊥b,则x=()。

  • A:-4
  • B:-1
  • C:1
  • D:4

答 案:D

2、甲、乙两个人各进行一次射击,甲击中目标的概率是0.2,乙击中目标的概率是0.7,则甲、乙两人都击中目标的概率是()。

答 案:A

解 析:本题属于相互独立事件同时发生的概率,设A为甲击中目标的事件,B为乙击中目标的事件,P(A)=O.2,P(B)=0.7,P(A·B)=P(A)·P(B)=O.2×0.7=0.14,故应选A。

3、若-1,a,b,c,-9五个数列成等比数列,则()

  • A:b=3,ac=9
  • B:b=-3,ac=9
  • C:b=-3,ac=-9
  • D:b=3,ac=-9

答 案:B

解 析:因为-1,a,b,c,-9成等比数列,所以ac=b2=-1×(-9)=9,所以ac=9,b=±3,又因为-1,a,b成等比数列,所以a2=-b>0,所以b=-3  

4、已知点M(-2,5),N(4,2),点P在上,且=1:2,则点P的坐标为()

  • A:
  • B:(0,4)
  • C:(8,2)
  • D:(2,1)

答 案:B

解 析:由题意得:  

主观题

1、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

2、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

3、设3a=5b=15,求a-1+b-1的值。  

答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1= =log153+log155=1。

解 析:过程中应用了换底公式的推论,即

4、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

填空题

1、“a>b”是“a-c>b-c”的______。

答 案:充要条件

2、设直线y=2x+m与抛物线y2=4x没有公共点,则m的取值范围是______。  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里