2025-01-27 12:29:14 来源:人人学历网
2025年成考高起点《数学(文史)》每日一练试题01月27日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、某学校为新生开设了4门选修课程,规定每位新生至少要选其中3门,则一位新生不同的选课方案共有 ( )
答 案:C
2、过点A与圆x2+y2=1相切的直线方程是()
答 案:D
解 析:【考点指要】本题主要考查的内容是利用点到直线的距离公式求直线的斜率,从而写出所求的直线方程,这是考试大纲要求掌握的概念.从近几年的试题分析可知,这类题的深度在今后成人高考中有可能加大,希望考生予以足够的重视.
3、()
答 案:B
解 析:
4、不等式|3x+1|≤2的解集是( )
答 案:A
解 析:不等式|3x+1|≤2的解集是不等式3x+1≤2与3x+1≥-2的解集的交集,因此原不等式可写成-2≤3x+1≤2,即-3≤3x≤1,-1≤x≤
在用集合表示x的解集为
【考点指要】本题主要考查绝对值不等式的解法以及会用集合表示不等式的解集,此类题是成人高考常出现的题型.
主观题
1、在△ABC中,已知证明a,b,c成等差数列。
答 案:
考点 本题主要考查三角函数的恒等变换以及积化和差公式的应用,积化和差有一定难度,请考生注意.
2、已知am=,an=
,求a3n-4m的值。
答 案:
3、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.
答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为
令设焦点F2(c,0)到渐近线
的距离为d,则
即从双曲线
的一个焦点F2(c,0)到一条渐近线
的距离等于虚半
轴的长b,由上述推导过程可知,点F2到渐近线
以及点F1(-c,0)到渐近线
的距离都等。
由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.
解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.
4、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.
(Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.
答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为
(4.0).
如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点,
【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.
填空题
1、
答 案:
解 析:
【考点指要】本题主要考查三角函数的最大值、最小值及值域的求法,解题时需要灵活运用诱导公式、二倍角公式以及辅助角公式,当函数可以化
2、在△ABC中,AB=1,______。
答 案: