2025-02-06 11:38:06 来源:人人学历网
2025年成考专升本《高等数学二》每日一练试题02月06日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、若,则
。()
答 案:错
解 析:所以
单选题
1、下列命题正确的是().
答 案:C
解 析:AD两项,设f(x)=|x|,显然x=0是函数的极小值点,且函数在该点也连续,但函数在该点不可导;B项,设f(x)=x3,显然x0=0是函数的驻点,但x0=0不是函数的极值点;C项,根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.
2、设,则
=().
答 案:D
解 析:
主观题
1、设生产某种产品的数量z与所用两种原料A的数量x吨和B的数量y吨间有关系式z=z(x,y)=xy,欲用100万元购买原料,已知A,B原料的单价分别为每吨1万元和每吨2万元,问购进两种原料各多少时,可使生产的产品数量最多?
答 案:解:当购进A原料x吨时,需花费x万元,此时,还可购进B原料吨,函数z=xy变为关于x的一元函数,
,其定义域为[0,100].求出z'=-x+50,令z'=0,即-x+50=0,解得x=50.当x<50时,z'>0;当x>50时,z'<0.所以x=50是函数
的极大值点,显然也是最大值点.
此时,y=25,即当购进A原料50吨.B原料25吨时,生产的产品数量最多.
2、计算.
答 案:解:设,
,当x=0时,t=1;x=3时,t=2.则原式可变换为
填空题
1、
答 案:
解 析:z对x求偏导时应视y为常数,并用一元函数求导公式计算,即。
2、设函数z=x2ey,则全微分dz=_______。
答 案:
解 析:
简答题
1、已知函数f(x)=ax3-bx2+cx在区间内是奇函数,且当x=1时,f(x)有极小值
,求另一个极值及此曲线的拐点.
答 案:f(x)=ax3-bx2+cx, 由于f(x)是奇函数,则必有x2的系数为0,即b=0.
即a+c=
,
得3a+c=0.解得a=
c=
此时
令
得
所以
为极大值,
得x=0,x<0时,
所以(0,0)为曲线的拐点.
2、
答 案: