2023-12-09 14:44:09 来源:人人学历网
2023年高职单招《数学》每日一练试题12月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、一辆大货车和一辆小轿车同时从A城出发开往B城,大货车每时行驶75千米,小轿车每时行驶80千米,两车4小时后相距15千米。()
答 案:错
解 析:首先用小轿车的速度减去大货车的速度,求出两车的速度之差是多少;然后根据路程÷速度=时间,用15除以两车的速度之差,求出几小时后两车相距15千米即可。解:15÷(80-75)=15÷5=3(小时),答:3小时后两车相距15千米。
2、不等式x^2-1>8的解集是(-3,3)。()
答 案:错
单选题
1、如图,函数的图象所在坐标系的原点是()
答 案:A
2、矩形的面积是200,它的长y和宽x之间的关系表达式是()
答 案:D
多选题
1、已知等差数列{an}的前n项和为,公差为d,则()
答 案:ABD
2、已知函数y=1/2sin2x则()
答 案:BC
解 析:A:sin2x最大值为1,则y=1/2sin2x的最大值为1/2,故A错B对。C:T=2π/W=2π/2=π,故C对D错
主观题
1、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.
答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是
(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得
所以x的取值范围是
2、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
填空题
1、小明想利用树影测树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测树高时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子上了墙(如图所示),他测得留在地面部分的影子长2.7m,留在墙壁部分的影高1.2m,则树高的高度为(太阳光线可看作为平行光线)_______.
答 案:4.2m
2、函数的定义域为().
答 案:
解 析:要使f(x)有意义,须满足解得