2025-06-09 14:42:06 来源:人人学历网
2025年高职单招《数学》每日一练试题06月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、函数的最小正周期为
。()
答 案:对
2、在平面直角坐标系中,原点(0,0)在直线x-y+2=0的左上方.()
答 案:错
单选题
1、已知等比数列{an} 的前n项和则m=()
答 案:C
解 析:由题意知,等比数列的公比
则
所以-(m-5)=1,解得m=4,故选C。
2、在棱长为1的正方体ABCD-A1B1C1D1中,点A到平面A1BCD1的距离为()
答 案:C
多选题
1、下列计算结果正确的是()
答 案:AC
2、列命题中正确的个数是( )
答 案:BCD
解 析:对于A取a=1,b=2,c=3,a2=1,b2=4,c2=9,A错; 对于B,a=b=c,2a=2b=2c,B正确;对于C,∵a,b,c成等差数列,∴a+c=2b.∴(ka+2)+(kc+2)=k(a+c)+4=2(kb+2),C正确;对于D,a=b=c≠0?1/a=1/b=1/c,D正确。综上可知选BCD。
主观题
1、甲、乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是
.假设各局比赛结果相互独立.
(1)分别求甲队以3:0,3:1,3:2获得比赛胜利的概率;
(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分.求乙队得分
的分布列和数学期望.
答 案:(1)设“甲队以3:0胜利”为事件A,“甲队以3:1胜利”为事件B,“甲队以3:2胜利”为事件C,则
(2)
的所有可能取值为0,1,2,3,设“乙队以3:2胜利”为事件D,由于各局比赛结果相互独立,
则
因此,
的分布列为
的数学期望
2、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
填空题
1、
答 案:1
2、已知,则集合M和P的关系为___。
答 案:M=P
解 析: