2025年高职单招每日一练《生物》2月20日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:761

试卷答案:有

试卷介绍: 2025年高职单招每日一练《生物》2月20日专为备考2025年生物考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 某遗传性耳聋为单基因常染色体隐性遗传病。下列方法中,可对未出生胎儿进行精确诊断的是()  

    A遗传咨询

    B基因检测

    C发病率调查

    D染色体观察

  • 2. 下列物质或结构的层次关系由大到小的是()

    A染色体→DNA→基因→脱氧核苷酸

    B染色体→DNA→脱氧核苷酸→基因

    C染色体→脱氧核苷酸→DNA→基因

    D基因→染色体→脱氧核苷酸→DNA

  • 1. 以下属于脐带血中有功能造血干细胞的特点的是()(填字母)。  

    A表现出较强的细胞分裂能力

    B细胞呼吸相关酶的含量增加

    C细胞抗自由基氧化能力增强

    D增加单位脐带血中造血干细胞的数量

  • 2. 结合本文信息分析,以下过程合理的是()。  

    A大肠杆菌通过ABC外向转运蛋白分泌蛋白质

    B植物细胞通过ABC内向转运蛋白吸收

    C动物细胞通过ABC内向转运蛋白吸收氨基酸

    D动物细胞通过ABC外向转运蛋白排出Cl-

  • 1. 为研究弱光环境下不同部位补光对植株光合作用的影响,研究者用LED灯对番茄植株顶部和中部进行补光。顶部补光时LED灯距植株顶部5~10cm,中部补光时LED灯始终保持在植株中部。请回答问题: (1)培养一段时间后,分别检测叶片的叶绿素含量和光合速率,结果如图所示。 实验组的处理是()。据图可知,顶部补光可提高叶片中的(),从而影响叶片对光的()。 (2)R物质能激活催化CO2固定的相关酶。对各组叶片中R物质的含量进行测定,结果如下表。 注:“+”越多,R物质含量越高 CO2固定过程发生的场所是()。据表分析,补光能够()CO2的固定。 (3)研究发现,与对照组相比,中部补光的植株气孔开放程度低。结合(1)和(2)分析,中部补光叶片光合速率低于对照组,主要是受光合作用()阶段的限制。 (4)顶部补光叶片光合速率高的原因是(),此项研究可为提高番茄产量提供依据。  
  • 2. 学习下列材料,回答(1)~(3)题。 mRNA技术带来新一轮疗法革命 蛋白替代疗法一般用于治疗与特定蛋白质功能丧失相关的单基因疾病。由于酶缺失或缺陷引起的疾病可以用外源供应的酶进行治疗。例如,分别使用凝血因子Ⅶ、凝血因子Ⅸ治疗A型、B型血友病。然而,一些蛋白质的体外合成非常困难,限制了这种疗法在临床上的应用。基于mRNA技术的疗法,是将体外获得的mRNA递送到人体的特定细胞中,让其合成原本缺乏的蛋白质,从而达到预防或治疗疾病的目的。 把mRNA从细胞外递送进细胞内,需借助递送系统。递送系统能保护mRNA分子,使其在血液中不被降解。纳米腊质体是目前已实现临床应用的递送系统,可以保证mRNA顺利接触靶细胞,再通过胞吞作用进入细胞。 研发mRNA药物遇到一个难题:外源mRNA进入细胞后会引发机体免疫反应,出现严重的炎症。科学家卡塔琳·考里科和德鲁·韦斯曼成功对mRNA进行化学修饰,将组成mRNA的尿苷替换为假尿苷(如图甲所示),修饰过的mRNA进入细胞后能有效躲避免疫系统的识别,大大降低了炎症反应,蛋白合成量显著增加。两位科学家因此获得2023年诺贝尔生理学或医学奖。 理论上,蛋白质均能以mRNA为模板合成。因此有人认为mRNA是解锁各类疾病的“万能钥匙”,可以探索利用mRNA技术治疗蛋白质异常的疾病,达到精准治疗的目的。 (1)推测用于递送mRNA的纳米脂质体中的“脂质”主要指()。 (2)尿苷由一分子尿嘧啶和一分子核糖组成,一分子尿苷再与一分子()组合,构成尿嘧啶核糖核苷酸。将mRNA的尿苷替换为假尿苷,其碱基排列顺序()填“改变”或“未改变”)。mRNA进入细胞质后,会指导合成具有一定()顺序的蛋白质。 (3)文中提到,mRNA是解锁各类疾病的“万能钥匙”。图乙为用mRNA技术治疗疾病的思路,请在横线的I、Ⅱ处补充相应内容。  
  • 1. 茶尺蠖(茶尺蛾的幼虫)是我国茶树的主要害虫,影响茶叶的产量。请回答问题: (1)E病毒对茶尺蠖具有较高的致病力。研究E病毒对生活在甲、乙两个不同地域茶尺蠖死亡率的影响,结果如图1所示。对甲、乙两地茶尺蛾进行形态学观察,结果如图2所示。 ①据图1分析,()地的茶尺蠖对E病毒更敏感。 ②图2显示,两地茶尺蛾的形态特征基本一致,由于长期()隔离导致种群基因库存在差别,使得甲、乙两地茶尺蛾颜色深浅和存()在差异。 (2)基于上述研究,推测甲、乙两地茶尺蛾为两个物种。为验证推测,将甲、乙两地的茶尺蛾进行杂交,结果如下表。 注:羽化是指由蛹发育为成虫的过程 ①据表可知,与组合一、组合二相比,组合三受精卵数量、卵孵化率均();茶尺蠖以茶树的叶为食,且食量较大,组合三中幼虫到化蛹的时间短,使蛹的重量()羽化率低,最终导致F1个体数量下降,且出现畸形。 ②组合三中F1雌雄比例失调,羽化时间不同步,难以配对,不能产生F2,说明两地茶尺蛾出现了() ③上述分析结()果(填“支持”或“不支持”)推测。
  • 2. 图1为细胞合成与分泌淀粉酶的过程示意图,图2为细胞膜结构示意图,图中序号表示细胞结构或物质。 请回答问题: (1)淀粉酶的化学本质是(),控制该酶合成的遗传物质存在于[4]()中。 (2)图1中,淀粉酶先在核糖体中合成,再经[2]()运输到[1]()加工,最后由小泡运到细胞膜外,整个过程均需[3]()提供能量。 (3)图2中,与细胞相互识别有关的是图中的[5](),帮助某些离子进入细胞的是()(填图中序号)。
  • 1. 学习下列材料,请回答(1)~(4)题。 基于细菌构建拟真核细胞 人工构建细胞的传统手段是将纯化后的酶、基因等加入囊泡或微滴。筛选得到的人工细胞具有基因表达、酶催化等功能,但结构较简单,且功能单一。科研人员打破传统手段,以原核细胞为基础材料构建出拟真核细胞,其构建过程分两步。 第一步:构建原细胞。将大肠杆菌和铜绿假单胞菌置于空液滴中,大肠杆菌会自发地进入液滴内部,铜绿假单胞菌在液滴表面。利用酶将两种细菌裂解后,铜绿假单胞菌的质膜留在液滴表面,液滴内部有主要来自大肠杆菌和部分来自假单胞菌的蛋白质、核酸等成分。这些成分具有基本的酶催化、糖酵解和基因表达功能。由此构建出一个由质膜包裹的、内含细胞质活性成分的原细胞。 第二步:构建拟真核细胞。在原细胞中加入组蛋白等大分子,在其内部得到DNA/组蛋白体,构建一个拟细胞核结构。随后在细胞质植入活的大肠杆菌,产生内源性ATP。再加入肌动蛋白单体构建拟细胞骨架的结构,大大增强了细胞的稳定性。随着时间的推移,内部代谢物质逐渐积累,球状原细胞在48小时后呈现如图所示的不规则形状,且保持了细胞结构的复杂性,质膜也不断修复。最终获得了一个结构和功能复杂的拟真核细胞。 (1)从文中信息可知,原细胞的质膜来源于(),质膜可将其与外界环境分隔开,从而保证了内部环境的() (2)推测文中“在细胞质植入活的大肠杆菌,产生内源性ATP”这一过程相当于在原细胞 中植入了()(填细胞器名称),()了原细胞已有的功能。 (3)与真核细胞相比,拟真核细胞还未具有()等结构。 (4)从细胞起源和进化的角度分析,这一研究可以为()提供证据。  
  • 2. 阅读科普短文,请回答问题。 当iPSC"遇到"CRISPR/Cas9 诱导多能干细胞(iPSC)技术和基因编辑技术(如CRISPR/Cas9)在当今生命科学研究中发挥着极其重要的作用,相关科学家分别于2012年和2020年获得诺贝尔奖,都具有里程碑式的意义。当iPSC“遇到”CRISPR/Cas9能创造出什么样的奇迹呢? 1958年,科学家利用胡萝卜的韧皮部细胞培养出胡萝卜植株,此项工作完美地诠释了“高度分化的植物细胞依然具有发育成完整个体或分化成其他各种细胞的潜能和特性”。然而,对于高度分化的动物细胞而言,类似过程却不那么容易。 2006年,科学家将细胞干性基因转入小鼠体细胞,诱导其成为多能干细胞,即iPSC。该技术突破了高度分化的动物细胞难以实现重新分裂、分化的瓶颈,为进一步定向诱导奠定了基础,也为那些依赖于胚胎干细胞而进行的疾病治疗提供了新的选择。但是,这种技术需通过病毒介导,且转入的细胞干性基因可能使iPS细胞癌变。 直到2012年,研究人员发现一种源自细菌的CRISPR/Cas9系统可作为基因编辑的工具,能对基因进行定向改造。例如,研究者将β-珠蛋白生成障碍性贫血病小鼠的体细胞诱导成iPS细胞,再利用CRISPR/Cas9对该细胞的β-珠蛋白基因进行矫正,并诱导该细胞分化为造血干细胞,然后再移植到β-珠蛋白生成障碍性贫血小鼠体内,发现该小鼠能够正常表达β-珠蛋白。 两大技术的“联手”,将在疾病治疗方面有更广阔的应用前景。 (1)由于细胞干性基因的转入,使体细胞恢复了()的能力,成为iPS细胞,进而可以定向诱导成多种体细胞。诱导成的多种体细胞具有()(填“相同”或“不同”)的遗传信息。 (2)iPS细胞诱导产生的造血干细胞向红细胞分化过程中,β-珠蛋白基因可以通过()和()过程形成β-珠蛋白。 (3)结合文中信息,概述iPSC和CRISPR/Cas9技术“联手”用于疾病治疗的优势:()