2025年高职单招每日一练《生物》4月1日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1341

试卷答案:有

试卷介绍: 2025年高职单招每日一练《生物》4月1日专为备考2025年生物考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 某遗传性耳聋为单基因常染色体隐性遗传病。下列方法中,可对未出生胎儿进行精确诊断的是()  

    A遗传咨询

    B基因检测

    C发病率调查

    D染色体观察

  • 2. 下列关于基因库的描述,错误的是()  

    A基因库是一个种群的全部个体所含的全部基因

    B生物个体总是要死亡的,但基因库却因种群个体的繁殖而代代相传

    C种群中每个个体都含有种群基因库中的全部基因

    D基因突变可能改变基因库的组成

  • 1. 下列选项中,能体现基因剂量补偿效应的有()(多选)。  

    A雄性果蝇X染色体上的基因转录量加倍

    B四倍体番茄的维生素C含量比二倍体的几乎增加一倍

    C雌性秀丽隐杆线虫每条X染色体上的基因转录量减半

  • 2. 以下属于脐带血中有功能造血干细胞的特点的是()(填字母)。  

    A表现出较强的细胞分裂能力

    B细胞呼吸相关酶的含量增加

    C细胞抗自由基氧化能力增强

    D增加单位脐带血中造血干细胞的数量

  • 1. 果蝇(2n=8)是遗传学常用的动物实验材料,科学家对果蝇的体色变异进行了相关研究。 (1)图1是雄果蝇体细胞染色体的显微照片,其中的一套Ⅱ、Ⅲ、Ⅳ和X(或Y)称为一个(),果蝇是()倍体。 (2)野生型果蝇体色为灰色,研究人员将黑檀体突变型果蝇和野生型果蝇杂交,显微镜下观察F1()期染色体的行为,结果发现亚染色体出现如图2所示状态,由此判断黑檀体果蝇的变异类型为()。 (3)研究人员又发现了另一果蝇体色突变体--黑条体,体内缺失e蛋白。测序结果显示,野生型灰体基因和黑条体基因碱基序列有差异(图3)。 ①据图3分析,黑条体e蛋白缺失的根本原因是()。 ②已知真核生物基因的转录产物需要经过剪切,形成成熟mRNA才能作为翻译的模板。翻译时,核糖体与mRNA起始密码子(AUG)上游的“颈环”结构结合,随后滑向AUG开始合成多肽链。检测发现,黑条体果蝇成熟mRNA的AUG上游碱基数量比野生型增加了约3000个,试阐释黑条体果蝇体内e蛋白缺失的原因:()。 (4)已知果蝇红眼基因位于X染色体上,长翅/残翅基因位于Ⅱ染色体上,通过杂交筛选出集白眼、残翅、黑檀体(或黑条体)三个隐性性状于一身的新品种(三隐品种)。三隐品种果蝇在遗传中有广泛的应用,请简要说出其中某项具体应用的思路:()。  
  • 2. 色素缺失会严重影响叶绿体的功能,造成玉米减产。科研人员诱变得到叶色突变体玉米,并检测突变体与野生型玉米叶片中的色素含量,结果如图1所示。请回答问题: (1)据图1可知,与野生型相比,叶色突变体色素含量均降低,其中()的含量变化最大。 (2)结合图2分析,叶色突变体色素含量降低会影响光反应,使光反应产物[①]()和NADPH减少,导致叶绿体()中进行的暗反应减弱,合成的[②]()减少,使玉米产量降低。 (3)从结构与功能的角度分析,若在显微镜下观察叶色突变体的叶肉细胞,其叶绿体可能出现()等变化,从而导致色素含量降低,光合作用强度下降。  
  • 1. 色素缺失会严重影响叶绿体的功能,造成玉米减产。科研人员诱变得到叶色突变体玉米,并检测突变体与野生型玉米叶片中的色素含量,结果如图1所示。请回答问题: (1)据图1可知,与野生型相比,叶色突变体色素含量均降低,其中()的含量变化最大。 (2)结合图2分析,叶色突变体色素含量降低会影响光反应,使光反应产物[①]()和NADPH减少,导致叶绿体()中进行的暗反应减弱,合成的[②]()减少,使玉米产量降低。 (3)从结构与功能的角度分析,若在显微镜下观察叶色突变体的叶肉细胞,其叶绿体可能出现()等变化,从而导致色素含量降低,光合作用强度下降。
  • 2. B型血友病是编码凝血因子9的F9基因突变所致的一种遗传病。我国科学家构建了B型血友病模型小鼠,并尝试对模型鼠进行基因治疗,以探索治疗该病的新途径。 请回答问题: (1)图1表示该病的发病机理,其中①过程所需要的酶是(),②过程称为(),③过程表示F9基因发生碱基的()而引起碱基序列的改变,④代表的碱基序列为() (2)科学家利用基因编辑技术对血友病模型鼠的突变基因进行定点“修改”,并测定凝血时间,结果如图2。结果表明基因治疗的模型鼠凝血能力(),依据是()
  • 1. 阅读科普短文,请回答问题。 当iPSC"遇到"CRISPR/Cas9 诱导多能干细胞(iPSC)技术和基因编辑技术(如CRISPR/Cas9)在当今生命科学研究中发挥着极其重要的作用,相关科学家分别于2012年和2020年获得诺贝尔奖,都具有里程碑式的意义。当iPSC“遇到”CRISPR/Cas9能创造出什么样的奇迹呢? 1958年,科学家利用胡萝卜的韧皮部细胞培养出胡萝卜植株,此项工作完美地诠释了“高度分化的植物细胞依然具有发育成完整个体或分化成其他各种细胞的潜能和特性”。然而,对于高度分化的动物细胞而言,类似过程却不那么容易。 2006年,科学家将细胞干性基因转入小鼠体细胞,诱导其成为多能干细胞,即iPSC。该技术突破了高度分化的动物细胞难以实现重新分裂、分化的瓶颈,为进一步定向诱导奠定了基础,也为那些依赖于胚胎干细胞而进行的疾病治疗提供了新的选择。但是,这种技术需通过病毒介导,且转入的细胞干性基因可能使iPS细胞癌变。 直到2012年,研究人员发现一种源自细菌的CRISPR/Cas9系统可作为基因编辑的工具,能对基因进行定向改造。例如,研究者将β-珠蛋白生成障碍性贫血病小鼠的体细胞诱导成iPS细胞,再利用CRISPR/Cas9对该细胞的β-珠蛋白基因进行矫正,并诱导该细胞分化为造血干细胞,然后再移植到β-珠蛋白生成障碍性贫血小鼠体内,发现该小鼠能够正常表达β-珠蛋白。 两大技术的“联手”,将在疾病治疗方面有更广阔的应用前景。 (1)由于细胞干性基因的转入,使体细胞恢复了()的能力,成为iPS细胞,进而可以定向诱导成多种体细胞。诱导成的多种体细胞具有()(填“相同”或“不同”)的遗传信息。 (2)iPS细胞诱导产生的造血干细胞向红细胞分化过程中,β-珠蛋白基因可以通过()和()过程形成β-珠蛋白。 (3)结合文中信息,概述iPSC和CRISPR/Cas9技术“联手”用于疾病治疗的优势:()
  • 2. 请阅读下面的科普短文,并回答问题: 20世纪60年代,有人提出:在生命起源之初,地球上可能存在一个RNA世界。在原始生命中,RNA既承担着遗传信息载体的功能,又具有催化化学反应的作用。 现有很多证据支持“RNA世界论”的观点。例如,RNA能自我复制,满足遗传物质传递遗传信息的要求;RNA既可作为核糖体结构的重要组成部分,又能在遗传信息的表达过程中作为DNA与蛋白质之间的信息纽带;科学家在原生动物四膜虫等生物中发现了核酶(具有催化活性的RNA)后,又陆续发现在蛋白质合成过程和mRNA的加工过程中均有核酶参与。 蛋白质有更复杂的氨基酸序列,更多样的空间结构,催化特定的底物发生化学反应,而RNA在催化反应的多样性及效率上均不如蛋白质。所以,RNA的催化功能逐渐被蛋白质代替。 RNA结构不稳定,容易受到环境影响而发生突变。RNA还能发生自身催化的水解反应,不易产生更长的多核苷酸链,携带的遗传信息量有限。所以,RNA作为遗传物质的功能逐渐被DNA代替。现今的绝大多数生物均以DNA为遗传物质,还有一个重要原因是DNA不含碱基U。研究发现,碱基C容易自发脱氨基而转变为U,若DNA含碱基U,与DNA复制相关的“修复系统”就无法区分并切除突变而来的U,导致DNA携带遗传信息的准确性降低。 地球生命共同传承着几十亿年来原始RNA演绎的生命之树,生命演化之初的RNA世界已转变为当今由RNA、DNA和蛋白质共同组成的生命世界。 (1)核酶的化学本质是() (2)RNA病毒的遗传信息蕴藏在()的排列顺序中。 (3)在“RNA世界”以后的亿万年进化过程中,RNA作为()的功能分别被蛋白质和DNA代替。 (4)在进化过程中,绝大多数生物以DNA作为遗传物质的原因是:与RNA相比,DNA分子() a.结构简单b.碱基种类多c.结构相对稳定d.复制的准确性高 (5)有人认为“生命都是一家”。结合上文,你是否认同这一说法,请说明理由:()