2025-02-10 12:19:37 来源:人人学历网
2025年成考高起点《数学(理)》每日一练试题02月10日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、已知,则sin2α=()
答 案:D
解 析:两边平方得
,故
2、已知焦点在x轴上的椭圆的焦距等于2则该椭圆上任一点P到两焦点的距里之和为()。
答 案:B
解 析:由题意可知a2=m,b2=4,2c=2,则,解得。a2=m-5,则该椭圆上任一点P到两焦点的距离之和为.
(答案为B)
3、如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=()
答 案:A
解 析:(a+b)(a-b)=
4、已知正方体ABCD-A'B’C’D'的棱长为1,则A’C与BC'所成角的余弦值为()。
答 案:B
解 析:
主观题
1、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每
的造价为15元,池底每
的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
2、
展开式的二项式系数之和比
展开式的二项式系数之和小240。 求:(1)
展开式的第3项;
(2)展开式的中间项。
答 案:
3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得
所以AB =4.因此
所以
4、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
填空题
1、已知≤0<2π,且实数x满足log3x=2-cos2θ+sin2θ,则x的最小值是______。
答 案:3
解 析:因为log3x=2-(cos2θ-sin2θ)=2-cos2θ。 又log3x中的底数3>1,因此要使x最小,应使2-cos2θ的值最小,而其最小值为1,故x=3。
2、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0