2025年成考高起点《数学(文史)》每日一练试题03月11日

2025-03-11 12:16:30 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题03月11日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合S={-1,1,2},T={1,2},下列各式正确的是()。  

  • A:
  • B:
  • C:S=T
  • D:

答 案:B

2、直线l1与直线l2:3x+2y-12=0的交点在x轴上,并且l1⊥l2,则l1在y轴上的截距是()。

  • A:-4
  • B:
  • C:4
  • D:

答 案:B

解 析:由于直线l2:3x+2y-12=0与x轴的交点为(4,0),斜率为故直线l1的斜率为,且经过(4,0),故l1的方程为y-0=令x=0求得,即l1在y轴上的截距是故选C。 用点斜式求得直线l1的方程,再根据直线在y轴上的截距的定义求得l1在y轴上的截距,本题主要考查用点斜式求直线的方程,直线在y轴上的截距的定义和求法,属于基础题

3、已知两数的等差中项为10,等比中项为8,则以这两数为根的一元二次方程是()。

  • A:x2+10x+8=0
  • B:x2-10x+64=0
  • C:x2-20x+8=0
  • D:x2-20x+64=0

答 案:D

4、不等式x2+x+>0的解集是()。

  • A:不等于- 的全体实数  
  • B:全体实数集
  • C:空集
  • D:x≠ 的一切实数

答 案:A

主观题

1、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

2、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.

答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。

3、设(0<α<π),求tanα的值。  

答 案:

4、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度

答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm, 由题意得y-y0=kx,即y=kx+y0, 由已知条件得 解得k=0.2,y0=8. 所求函数关系式为y=0.2x+8,弹的原长为8CM  

填空题

1、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

2、为了考察某种小麦的长势,从中抽取10株苗,测得苗高如下(单位:cm):12,13,14,15,10,16,13,11,15,11. 则该品种的小麦苗高的样本方差为__________cm2.

答 案:3.6

解 析:由题中条件可得 【考点指要】本题主要考查样本的平均值和方差的计算,考生只需熟记样本平均数和方差的公式即可.

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里