2023-05-02 11:25:43 来源:人人学历网
2023年成考高起点《数学(理)》每日一练试题05月02日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、从点M(x,3)向圆作切线,切线的最小值等于()
答 案:B
解 析:如图,相切是直线与圆的位置关系中的一种,此题利用圆心坐标、半径,求出切线长. 由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A,
由勾股定理得,
当x+2=0时,MA取最小值,最小值为
2、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()
答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
3、若甲:x>1,乙:则
答 案:D
解 析:而
故甲是乙的充分条件,但不是必要条件
4、若tanα=3,则
答 案:A
解 析:
主观题
1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
3、已知数列的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
4、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
填空题
1、设离散型随机变量的分布列如下表,那么
的期望等于()
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48
2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为