2025-04-17 11:36:06 来源:人人学历网
2025年成考专升本《高等数学一》每日一练试题04月17日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、=()。
答 案:C
解 析:x2+1在(-∞,∞)都是连续的,函数在连续区间的极限,可直接代入求得,=0+1=1。
2、设y=sinx,则y''=()。
答 案:A
解 析:y=sinx,则y'=cosx,。
3、设函数y=f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),曲线f(x)在(a,b)内平行于x轴的切线()。
答 案:B
解 析:由罗尔定理可知,至少存在一个,使得
.而
表示函数在
处的切线的斜率,所以曲线f(x)在(a,b)内平行于x轴的切线至少有一条。
主观题
1、求曲线y=x2在点(a,a2)(a<1)的一条切线,使由该切线与x=0、x=1和y=x2所围图形的面积最小。
答 案:解:设所求切线的切点为(a,b),见下图,则b=a2,
,切线方程为y-b=2a(x-a),y=2ax-2a2+b=2ax-a2。设对应图形面积为A,则
令,则
,令
。当a<
时,f'(a)<0;当a>
时,f'(a)>0,故
为f(a)的最小值点,切线方程为:y=x-
。
2、将函数f(x)=sinx展开为的幂级数.
答 案:解:由于若将
看成整体作为一个新变量,则套用正、余弦函数的展开式可得
从而有
其中
(k为非负整数)。
3、若,求a与b的值。
答 案:解:,又x
3,分母x-3
0;所以
,得9+3a+b=0,b=-9-3a,则
(9+3a)=(x-3)[x+(3+a)],故
a=0,b=-9。
填空题
1、过点M(1,2,3)且与平面2x-y+z=0平行的平面方程为()。
答 案:2x-y+z=3
解 析:因为已知平面与所求平面平行,取已知平面的法线向量(2,-1,1)即为所求平面法线向量.由平面的点法式方程可知所求平面为2(x-1)-(y-2)+(z-3)=0,即2x-y+z=3。
2、
答 案:0
解 析:
3、=()。
答 案:1
解 析:。
简答题
1、
答 案: