2025年成考高起点《数学(文史)》每日一练试题03月15日

2025-03-15 12:15:21 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题03月15日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数f(x)=x3-6x2+9x-3的单调区间为()。  

  • A:(-∞,-3),(-3,1),(1,+∞)
  • B:(-∞,-1),(-1,3),(3,+∞)
  • C:(-∞,-3),(-3,-1),(-1,+∞)
  • D:(-∞,1),(1,3),(3,+∞)

答 案:D

解 析:∵x∈R f’(x)=3x2-12x+9 =3(x2-4x+3) =3(x-3)(x-1) ∴x>3或x<1,f’(x)>0, 1

2、抛物线x2=-2y+2( )

  • A:开口向上,顶点为(0,-1)
  • B:开口向上,顶点为(0,1)
  • C:开口向下,顶点为(0,-1)
  • D:开口向下,顶点为(0,1)

答 案:D

解 析:抛物线方程x2=-2y+2通过变化 可得 可知抛物线开口向下,顶点为(0,1) 【考点指要】本题主要考查抛物线的基本性质,是历年成人高考的常见题.

3、()。

  • A:
  • B:
  • C:
  • D:

答 案:C

4、函数与y的图像之间的关系是  

  • A:关于原点对称
  • B:关于x轴对称
  • C:关于直线 y=1对称
  • D:关于y轴对称

答 案:D

解 析:关于y轴对称,

主观题

1、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

2、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度  

答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm。 由题意得 y-y0 =kx,即 y= kx+y0, 所求函数关系式为y=0.2x+8,弹簧的原长为8CM

3、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

4、已知函数ƒ(x)=ax3-x2+bx+1(a,b∈R)在区间(-∞,0)和(1,+∞)上都是增函数,在(0,1)内是减函数. (Ⅰ)求a,b的值; (Ⅱ)求曲线y=ƒ(x)在x=3处的切线方程.

答 案:(Ⅰ)因为函数ƒ(x)在(-∞,0)上递增,在(0,1)内递减,在(1,+∞)上有递增,可知函数在x=0和x=1处的导数值均为0. 又f’(x)=3ax2-2x+b, 所以f’(0)=b=0,f’(1)=3a-2+b=0. 即切点为(3.10),所以其切线方程为y-10=12(x-3),即12x-y-26 = 0.  

解 析:【考点指要】本题主要考查函数导数的几何意义、导数的求法和导数的应用——函数的单调区间及曲线的切线方程的求法  

填空题

1、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

2、函数y=2x(x+1)在x=2处的切线方程是__________.  

答 案:10x-y-8=0

解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里