2025年成考高起点《数学(文史)》每日一练试题03月26日

2025-03-26 12:03:48 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题03月26日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、曲线y=ax2+x+c在点(0,c)处的切线的倾斜角为()。

  • A:90°
  • B:60°
  • C:45°
  • D:30°

答 案:C

2、不等式|2x-3|≤1的解集为()

  • A:{x|1≤x≤2}
  • B:{x|x≤-1或x≥2}
  • C:{x|1≤x≤3}
  • D:{x|2≤x≤3}

答 案:A

解 析:故原不等式的解集为{x|1≤x≤2}

3、已知sinx,则x所在象限是()  

  • A:第一象限
  • B:第二象限
  • C:第三象限
  • D:第四象限

答 案:C

解 析:=sinx|sinx|+cosx|cosx|,当sinx、cosx均为负时,有 故x在第三象限  

4、下列函数中,为奇函数的是()。  

  • A:y=x3
  • B:y=-x3-1
  • C:
  • D:

答 案:A

主观题

1、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.  

答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵

2、设函数 (1)求;(2)求函数f(θ)最小值。

答 案:

3、求函数(x∈R)的最大值与最小值。  

答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx= 于是转化为求的最值。 由所设知 上为增函数,故g(t)的最大值为最小值为

4、已知函数ƒ(x)=ax3-x2+bx+1(a,b∈R)在区间(-∞,0)和(1,+∞)上都是增函数,在(0,1)内是减函数. (Ⅰ)求a,b的值; (Ⅱ)求曲线y=ƒ(x)在x=3处的切线方程.

答 案:(Ⅰ)因为函数ƒ(x)在(-∞,0)上递增,在(0,1)内递减,在(1,+∞)上有递增,可知函数在x=0和x=1处的导数值均为0. 又f’(x)=3ax2-2x+b, 所以f’(0)=b=0,f’(1)=3a-2+b=0. 即切点为(3.10),所以其切线方程为y-10=12(x-3),即12x-y-26 = 0.  

解 析:【考点指要】本题主要考查函数导数的几何意义、导数的求法和导数的应用——函数的单调区间及曲线的切线方程的求法  

填空题

1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()  

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.  

2、全集U,集合M,N如图1—7所示,用列举法表示M,N,CUM,CUN。

答 案:如图1—7,有M={1,2,3,4,5},N={4,5,6,7,8},CUM={6,7,8,9,10,11},CUN={1,2,3,9,10,11}。

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里