2025-06-08 12:22:04 来源:人人学历网
2025年成考高起点《数学(文史)》每日一练试题06月08日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、已知函数f(x)=cos,则下列等式中对于任意x都成立的是()。
答 案:C
2、()。
答 案:D
解 析:本题主要考查的知识点为三角函数的运算。 当时,cosα>sinα>0,所以
3、已知sinαcosα则cosα-sinα的值为()
答 案:A
解 析:
【考点指要】本题考查用三角函数的恒等变换进行计算,此类题是成人高考的重点.
4、设甲则()。
答 案:D
解 析:本题主要考查的知识点为简易逻辑. 由于,故甲既不是乙的充分条件,也不是乙的必要条件
主观题
1、cos20°cos40°cos80°的值。
答 案:
2、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.
答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为
令设焦点F2(c,0)到渐近线
的距离为d,则
即从双曲线
的一个焦点F2(c,0)到一条渐近线
的距离等于虚半
轴的长b,由上述推导过程可知,点F2到渐近线
以及点F1(-c,0)到渐近线
的距离都等。
由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.
解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.
3、设3a=5b=15,求a-1+b-1的值。
答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1= =log153+log155=1。
解 析:过程中应用了换底公式的推论,即
4、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度
答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm。 由题意得 y-y0 =kx,即 y= kx+y0,
所求函数关系式为y=0.2x+8,弹簧的原长为8CM
填空题
1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。
答 案:
解 析:本题主要考查的知识点为圆的切线.
设切点(x0,y0)则有
即
所以
故切点横坐标为
2、已知5a=2,25b=9,则52a-b的值等于______。
答 案:
解 析:由25b=9,得52b=9,5b=3。又5a=2,则
2022年成考高起点《数学(文史)》每日一练试题08月06日 08-06 2023年成考高起点《数学(文史)》每日一练试题06月08日 06-08 2023年成考高起点《数学(文史)》每日一练试题08月06日 08-06 2024年成考高起点《数学(文史)》每日一练试题08月06日 08-06 2024年成考高起点《数学(文史)》每日一练试题06月08日 06-08 2025年成考高起点《数学(文史)》每日一练试题04月06日 04-06 2025年成考高起点《数学(文史)》每日一练试题03月06日 03-06 2025年成考高起点《数学(文史)》每日一练试题05月06日 05-06