2025年成考高起点《数学(文史)》每日一练试题06月09日

2025-06-09 12:17:10 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题06月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知sinα=,且540°<α<630°,则sin2α=()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:由已知,360°+180°<α<360°+270°,所以α是第三象限的角,故

2、若向量a=(x,-2),b=(-2,1),且a//b,则x=()。

  • A:-4
  • B:-1
  • C:1
  • D:4

答 案:D

3、下列函数中,为偶函数的是()。

  • A:y=1/2x
  • B:y=2x
  • C:y=log2x
  • D:y=2cosx

答 案:D

4、设甲:x>3,乙:x>5,则()。  

  • A:甲是乙的充分条件,但不是乙的必要条件
  • B:甲是乙的必要条件,但不是乙的充分条件
  • C:甲是乙的充分必要条件
  • D:甲不是乙的充分条件,也不是乙的必要条件

答 案:B

主观题

1、  

答 案:

2、求函数(x∈R)的最大值与最小值。  

答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx= 于是转化为求的最值。 由所设知 上为增函数,故g(t)的最大值为最小值为

3、设椭圆的中心是坐标原点,长袖在x轴上,离心率,已知点P(0,3/2)到椭圆上的点的最远距离是,求椭圆的方程。

答 案:

4、若双曲线的两条准线将两个焦点的连线分成三等分,求双曲线的离心率。

答 案:设双曲线的半焦距为c,则双曲线 【考点指要】本题要求根据双曲线的焦距、离心率、准线方程三者之间的关系进行计算,属较容易题,在成人高考中常见.

填空题

1、log2[log2(log381)]=______。  

答 案:1

解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。  

2、平面内有10个点,任何三点都不在同一直线上,问能连成______条不同的直线。  

答 案:45

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里