2025年成考高起点《数学(文史)》每日一练试题06月14日

2025-06-14 12:05:05 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题06月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},则

  • A:S∪T=S
  • B:S∪T=T
  • C:S∩T=S
  • D:S∩T=∅

答 案:A

解 析:由已知条件可知集合S表示的是第第一,三象限的点集,集合T表示的是第一象限内点的集合,所以所以有S∪T=S,S∩T=T,所以选择A。

2、在四边形ABCD中,=()。

  • A:0
  • B:
  • C:
  • D:

答 案:A

3、设集合M={x|x<-3},N={x|x>1},则M∩N=()。  

  • A:R
  • B:(-∞,-3)∪(1,+∞)
  • C:(-3,1)
  • D:

答 案:D

4、函数的定义域是()

  • A:{x|-3≤x≤-1}
  • B:{x|x≤-3或x≥-1}
  • C:{x|1≤x≤3}
  • D:{x|x≤1或x≥3}

答 案:D

解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.

主观题

1、已知am=,an=,求a3n-4m的值。  

答 案:

2、设3a=5b=15,求a-1+b-1的值。  

答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1= =log153+log155=1。

解 析:过程中应用了换底公式的推论,即

3、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

4、计算  

答 案:

填空题

1、log2[log2(log381)]=______。  

答 案:1

解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。  

2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里