2025年成考专升本《高等数学一》每日一练试题02月24日

2025-02-24 11:34:56 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考专升本《高等数学一》每日一练试题02月24日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、在空间直角坐标系中,方程x2+z2=z的图形是()。

  • A:圆柱面
  • B:圆
  • C:抛物线
  • D:旋转抛物面

答 案:A

解 析:方程x2+z2=z可变形为,由此知该方程表示的是准线为圆、母线平行于y轴的圆柱面。

2、极限等于()。

  • A:5
  • B:
  • C:3
  • D:0

答 案:B

解 析:

3、函数的间断点是x=()。

  • A:1
  • B:0
  • C:-1
  • D:2

答 案:C

解 析:函数的间断点为其分母等于0的点,即x+1=0,x=-1。

主观题

1、计算极限

答 案:解:原式=

2、已知x=sint,y=cost-sint2,求

答 案:解:,故

3、试证:当x>0时,有不等式

答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证

,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以
综上可得:当x>0时,

填空题

1、已知,则=()。

答 案:

解 析:因为,故

2、过点M0(1,-1,0)且与平面x-y+3z=1平行的平面方程为=()。

答 案:x-y+3z=2

解 析:已知平面的法向量n1=(1,-1,3),所求平面π与π1平行,则平面π的法向量n//n1,取n=(1,-1,3),所求平面过点M0=(1,-1,0),由平面的点法式方程可知所求平面方程为,即x-y+3z=2。

3、曲线f(x)=x3-x上点(1,0)处的切线方程为()。

答 案:y=2x-2

解 析:,f'(1)=2,故曲线在点(1,0)处的切线方程为y-0=2(x-1),即y=2x-2。

简答题

1、函数y=y(x)由方程确定,求dy

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里