2025年成考专升本《高等数学一》每日一练试题04月16日

2025-04-16 11:31:41 来源:人人学历网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考专升本《高等数学一》每日一练试题04月16日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设在x=-1处连续,则a=()。

  • A:-2
  • B:-1
  • C:0
  • D:2

答 案:A

解 析:f(x)在x=-1处连续,则

2、下列各点在球面(x-1)2+y2+(z-1)2=1上的是()。

  • A:(1,0,1)
  • B:(2,0,2)
  • C:(1,1,1)
  • D:(1,1,2)

答 案:C

解 析:将各个点代入球面公式可知(1,1,1)在球面上。

3、设f(x,y)为连续函数,则()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:积分区域D可以由表示,其图形为图中阴影部分。也可以将D表示为,故二重积分也可表示为

主观题

1、将函数f(x)=展开为x-1的幂级数,并指出收敛区间(不讨论端点)。

答 案:解:,知-1<x-1<1,0<x<2,即收敛区间是(0,2)。

2、计算

答 案:解:利用洛必达法则,得

3、求y=的一阶导数y'。

答 案:解:两边取对数得两边对x求导得

填空题

1、设函数在x=0处连续,则a=()。

答 案:0

2、()。

答 案:

解 析:所求极限的表达式为分式,当x→2时,分母的极限不为零,因此

3、  

答 案:

解 析:

简答题

1、(1)将f(x)展开为x的幂级数;
(2)利用(1)的结果,求数项级数的和。  

答 案: (2)在上述展开式中,令x=1,可得  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里